

Advances in Sol-Gel Synthesis of $MgZr_{4(1-x)}Hf_{4x}P_6O_{24}$ (x = 0, 1) Solid Electrolytes for Electrochemical Devices

1,2,3*Mohammed Alhaji Adamu, ³Girish M Kale

¹Department of Metallurgical and Materials Engineering Technology, Kogi State Polytechnic, Lokoja, Kogi State, Nigeria

²Engineering Materials Research Group, Kogi State Polytechnic, Lokoja, Kogi State, Nigeria ³School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom *Corresponding Email: drmadamu@yahoo.com; Tel: +234(0)8057211707

Abstract

The potential solid electrolytes, $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ were prepared using modified novel sol-gel method. Structural and electrical properties of the solid electrolytes were determined. TGA-DSC analyses indicated that the pure dried xerogel powders, when calcined at 900 °C converts to pure single phase $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ nanopowders with excellent crystallinity. Pellets of 13 mm diameter and 3.8 mm thickness made by uniaxial compression were respectively sintered at 1300 °C. Powder XRD analyses indicated that crystalline phase of $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ nanoparticles exhibit monoclinic structure with crystallite size of approx. 39 mm and 42 mm, respectively. The sintered pellets were stable from 1000 °C to 1300 °C, with $MgHf_4P_6O_{24}$ solid electrolyte showing no trace of coexistent second phase at higher temperatures. Relative density analyses of sintered $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ pellets yield optimum density of approx. 99% and 98% at 1300 °C, respectively, which are in perfect agreement with SEM-EDS analyses of the sintered pellets. Using impedance spectroscopy, the bulk ionic conductivity of the platinum-cured sintered $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ pellets were determined as 7.23 x 10^{-3} Scm⁻¹ at 725 °C and 4.52 x 10^{-4} Scm⁻¹ at 747 °C, respectively. Activation energy of $MgZr_4P_6O_{24}$ ($E_a = 0.84 \pm 0.04 eV$) and $MgHf_4P_6O_{24}$ ($E_a = 0.74 \pm 0.02 eV$) solid electrolytes indicating $MgZr_4P_6O_{24}$ solid electrolyte as possessing improved Mg^{2+} -ion conducting mobile species at high temperatures. However, both solid electrolytes find suitable applications in electrochemical devices.

Keywords: Sol-gel synthesis, Solid electrolyte, MgZr_{4(1-x)}Hf_{4x}P₆O₂₄, Structural analysis, Electrical Properties, Electrochemical devices

INTRODUCTION

Research in materials synthesis and characterisation shows the benefit of knowing the behaviour of materials in operation. Today, various materials function in both ambient and high temperature environment, as such, appropriate materials are selected for certain application. Selecting materials for high temperature application requires operational stability of relevant materials properties as well as environmental suitability compared to applications at ambient temperatures. Temperature influences the stability of functional materials in operation and the need to select materials suitable for different application is required.

Solid electrolytes are materials in which the electric current is predominantly by ions (Ipser *et al.*, 2010). They can be oxides, halides, sulphides and other types of solid materials. They have gained importance due to their role in various scientific and technological applications as they are being used in electrochemical cells to measure chemical potentials in gases, liquids and solids. In addition, they can also be used to control the chemical composition by coulometric titration. Theory of solid electrolytes and their applications, as observed in sensors and other electrochemical devices

have been well discussed in many books (Hagenmuller & Van Gool, 1978; Subbarao, 1980; Rickert, 1982; Goto, 1988; Takehiko, 1989; Fischer & Janke, 1975; Hladik, 1972) and review papers (Pratt, 1990; Chang & Sommer, 1997; Kummer, 1972; Stevens & Binner, 1984; Collongues *et al.*, 1984; West, 1989; Ferloni & Magistris, 1994).

Solid electrolytes, like the magnesium zirconium phosphate, MgZr₄P₆O₂₄ and other phosphate-based solid electrolytes have been widely studied due to their potential applications as solid electrolytes in electrochemical devices and thermodynamic measurements (Kale & Jacob, 1989; Kale et al., 1996; Mudenda & Kale, 2017). In the same light, data on the sol-gel synthesis and electrical characterisation of MgZr₄P₆O₂₄ solid electrolytes have been copiously published (Adamu & Kale, 2016; Adamu et al., 2020; Kale et al., 2004; Fergus, 2009; Pet'kov et al., 2014). Recently, extensive attention have been given to MgZr₄P₆O₂₄ solid electrolyte owing to their simple preparation process, structural and thermal stability, ionic mobility and broad applications as ionic conductor in electrochemical devices. In comparison, data on solgel synthesis of the MgHf₄P₆O₂₄ solid electrolytes and

other phosphate electrolytes have been scarcely or not reported (Adamu & Kale, 2025a; Adamu & Kale, 2025b).

In this study, MgHf₄P₆O₂₄ solid electrolyte was prepared using sol-gel method akin to MgZr₄P₆O₂₄ solid electrolyte, because the sol-gel method has shown adequate potential in producing pure and fine homogeneous powders at a relatively low temperature, thereby reducing carbon footprint when compared to other available synthesis methods (Adamu & Kale, 2016; Adamu et al., 2020; Kale et al., 2004; Fergus, 2009; Pet'kov et al., 2014; Kakihana, 1996). Furthermore, the sol-gel method used in producing this solid electrolyte provide potential advantage of achieving better homogeneity, better compositional control and lower processing temperature over conventional solid-state method, and this accounts for high relative density and improved ionic conductivity of the solid electrolytes (Mudenda & Kale, 2017; Adamu & Kale, 2016). In our recent study, sol-gel synthesis of the MgZr₄P₆O₂₄ solid electrolyte shows excellent improvement in the ionic mobility and conductivity of Mg²⁺-ion conducting species in the solid electrolyte (Adamu & Kale, 2016; Adamu et al., 2020). This could be attributed to the highly dense MgZr₄P₆O₂₄ solid electrolyte which invariably resulted in high ionic conducting solid electrolytes with improved ionic mobility of the conducting species.

Impedance spectroscopy measurement is a major characterisation requirement in this study. In obtaining a highly dense sample pellets, high sintering temperature is a conventional sintering practice for solid electrolytes. To obtain a pure stable phase pellet, the sintering temperature is carefully selected and since some composite pellets transform at relatively hightemperatures, the balance in sample pellet purity, stability and sintering temperatures has to be reached. For instance, the MgZr₄P₆O₂₄ sample compound transforms into Zr₂(PO₄)₂O phase at a sintering temperature higher than 1300°C (Adamu & Kale, 2016), thereby changing the crystal structure or phase of the MgZr₄P₆O₂₄ solid electrolyte. However, MgHf₄P₆O₂₄ solid electrolyte maintains its stability at higher temperatures (Adamu & Kale, 2025a). One effect of heating a phosphate-based compound at a high temperature is the loss of P₂O₅ oxide from zirconia

precipitate as a result of its volatility (Collin & Boilot, 1989).

The MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolytes have likely applications in electrochemical devices like electrochemical sensors, solid-state Mg batteries and solid-oxide fuel cells (SOFCs).

MATERIALS AND METHOD

Materials preparation

All chemicals are analytical grade and used as received without further purification. Single phase MgZr₄₍₁₋ $_{x)}Hf_{4x}P_6O_{24}$ (x = 0, 1) solid electrolytes were synthesised using sol-gel method to produce fine nanopowders; this was achieved through mixing on an atomic scale by combining aqueous solutions of precursor soluble salts at relatively low crystallisation temperature and, it produces chemical compositions that are not always possible by solid-state fusion method. Equation 1 and Equation 2 shows the stoichiometric amount of pure chemical solutions made from the precursors; Mg(NO₃)₂, ZrOCl₂ and NH₄H₂PO₄, to synthesis MgZr₄P₆O₂₄ xerogel powders (Adamu & Kale, 2016; Adamu et al., 2020), while the precursors; Mg(NO₃)₂, HfCl₄ and NH₄H₂PO₄, in aqueous solutions were mixed separately in stoichiometric proportion to synthesis MgHf₄P₆O₂₄ xerogel powders. The resulting dried xerogel powders were calcined at 900 °C. The calcined nanopowders were then pelletised and sintered at 1300 °C, using data from TGA-DSC profiles. Furthermore, the sintered pellets of MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolytes were characterised for their structural stability and electrical properties. The impedance analysis was determined using two-probe analysis at an impedance temperature ranging from 182 °C to 764 °C and a frequency ranging from 100 mHz to 32 MHz.

The sol-gel synthesis process illustrated in Figure 1 describes all the steps and chemical reactions involved in a sol-gel method; the steps such as preparing the sol (2) from inorganic precursors and monitored reaction (4) from which aqueous gel (6) was prepared which was dried during solvent evaporation (8) to form a dried xerogel powder (10) which was later calcined (11) at specific temperatures and annealing time to form the desired compound (12).

$$Mg(NO_3)_2 (aq) + 4ZrOCl_2.8H_2O (aq) + 6NH_4H_2PO_4 (aq)$$

= $MgZr_4P_6O_{24}(s) + 6NH_4Cl (aq) + 2HCl (aq) + 2HNO_3 (aq) + 36H_2O (l)$ Equation 1
(Adamu & Kale, 2016; Adamu *et al.*, 2020)

$$Mg(NO_3)_2 (aq) + 4HfCl_4 (aq) + 6NH_4H_2PO_4 (aq)$$

= $MgHf_4P_6O_{24}(s) + 6NH_4Cl (aq) + 10HCl (aq) + 2HNO_3 (aq)$ Equation 2
(Adamu & Kale, 2025a)

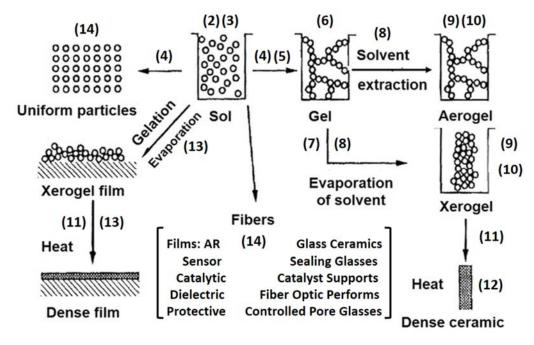


Figure 1: Sol-gel synthesis process showing all the steps of formation (Brinker & Scherer, 2013)

Materials characterisation

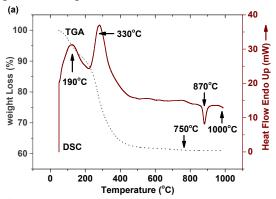
The STA 8000 (PerkinElmer, Seer Green, UK) was used to measure the TGA-DSC, which was later used to analyse the weight loss and thermal oxidation behaviour of the dried xerogel powders. In this measurement, effective optimisation calcination condition of the xerogel powders in a controlled atmosphere at a flow rate of 50 mL min⁻¹ using a constant heating-cooling rate at 10 °C min⁻¹ within a temperature from 30 °C to 1000 °C, akin to that described in our recent paper (Adamu *et al.*, 2020). Based on the data from this measurement, the resultant dried xerogel powders were calcined at 900 °C, and the pure calcined nano size powders were pelletised and sintered at 1300 °C, using the same heating-cooling condition.

Powder x-ray diffractometer (Bruker D8 advance, Karlsruhe, GmbH) equipped with $CuK\alpha_1$ ($\lambda=1.5406$ Å) radiation source operating at 30 kV and 45 mA and calibrated against Si standard was used to analyse the phase structure of $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ solid electrolytes. The x-ray diffraction data was collected over $10^{\circ} \le 2\theta \le 80^{\circ}$ scan range.

Some pellets of MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolytes with 13 mm diameter and 3.8 mm thickness were pressed from their dried calcined nanopowders (mixed with 1 wt.% binder, Ciba Glascol HA4 and dried at 100 °C for 0.5 h) using the room temperature compressive pressure consolidation of 5kN. The resultant green body-pellets were initially heated at 400 - 450 °C

for the purpose of burning off the Ciba Glascol HA4 binder prior sintering at different temperatures ranging from 1000 °C to 1500 °C for 24 h at 10 °C min⁻¹ heating rate. The resultant sintered pellets were characterised for their density.

Microstructure of the MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolyte pellets were analysed using SEM (Carl Zeiss EVO MA15, Jena, GmbH) equipped with EDS and Oxford Aztec X-Act EDS spectrometer attached to Carl Zeiss EVO MA15 deployed for the elemental composition analysis of the pellets *in situ* at an accelerating voltage of 20 kV. The SEM images were obtained on a freshly broken surfaces of the pellets coated with a very thin platinum layer to avoid the pellets from charging.


Impedance analyser, Solartron SI1260 FRA (Hampshire, UK) was used to analyse the electrical properties of the solid electrolytes in this study. Sintered pellets of MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolytes were mildly ground to achieve a flat surface area without diminishing the pellets thickness. Platinum paste (Sigma-Aldrich, UK) was lightly applied to the opposite parallel faces of the solid electrolytes sintered pellets, and then allowed to dry before firing in a tube furnace at 800 °C for 0.5 h to form contact electrodes on both surfaces of the pellets. Ionic conductivity was therefore plotted as a function of temperature and frequency in the temperature range from 182 to 764 °C and frequency range from 100 mHz to 32 MHz.

RESULTS AND DISCUSSIONS

Thermal analysis (TGA-DSC)

Figure 2 shows decomposition changes in MgZr₄P₆O₂₄ (Adamu & Kale, 2016; Adamu *et al.*, 2020) and MgHf₄P₆O₂₄ (Adamu & Kale, 2025a) xerogel powders using TGA-DSC profiles.

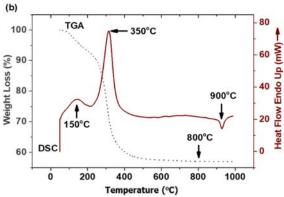


Figure 2: TGA-DSC profiles of (a) MgZr₄P₆O₂₄ (Adamu & Kale, 2016; Adamu *et al.*, 2020) (b) MgHf₄P₆O₂₄ (Adamu & Kale, 2025a) dried xerogel powders with a scan rate of 10 °Cmin⁻¹ in air

The TGA decomposition changes is presented in three different regions: The first region within 30 - 100 °C corresponds to the removal of lattice H₂O. The weight loss in 150 - 500 °C temperature region is attributed to the decomposition or oxidation of gelled inorganic precursor materials such as Mg(NO₃)₂, HfCl₄ and NH₄H₂PO₄. There was no further reduction in weight above 500±25 °C for the MgHf₄P₆O₂₄ xerogel powders. Similarly, the DSC profiles of MgHf₄P₆O₂₄ xerogel powders clearly shows two endothermic decomposition peaks at 150 °C and 350 °C, and an exothermic peak at 900 °C. It is also known that the inorganic precursor, NH₄H₂PO₄ decomposes into (NH₄)₃H₂P₃O₁₀ and H₂O molecules at 140 - 170 °C which could be responsible for the endothermic peak at 150 °C. Mg(NO₃)₂ compound also decomposes into MgO, NO₂ and O2 at a temperature above 300 °C, this could be responsible for the endothermic peak at 350 °C. The reactive oxide HfO2 formed by oxidation of HfCl4 at 432 $^{\circ}$ C yields MgHf₄P₆O₂₄ after stoichiometric composition reaction with MgO and P₂O₅ reactive oxides at 900 $^{\circ}$ C. The exothermic peak observed at 900 $^{\circ}$ C indicates the formation of a single phase MgHf₄P₆O₂₄ nanoparticles with full crystallinity. In this study, TGA-DSC analysis was limited to 1000 $^{\circ}$ C because of the heating capacity range of the equipment.

According to the TGA-DSC analysis for $MgZr_4P_6O_{24}$ xerogel powders (Adamu & Kale, 2016; Adamu *et al.*, 2020) and for $MgHf_4P_6O_{24}$ (Adamu & Kale, 2025a) xerogel powders, a pure single phase of the respective solid electrolytes were formed at 800 °C but fully crystallised at 900 °C after calcination.

X-ray diffraction (XRD)

Figure 3 shows crystalline MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ nanopowders calcined at 900 °C and the pellets sintered at 1300 °C. In Figure 3(a) and Figure 3(b), it can be deduced that crystalline MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolytes were formed at 900 °C and the pellets were sintered at 1300 °C, with no traces of coexistent second phase. However, in Figure 3(a), MgZr₄P₆O₂₄ sintered pellet shows minor extraneous peaks at higher temperatures, indicating coexistent second phase while Figure 3(b) shows no such traces. The profiles on Figure 3(a) and Figure 3(b) shows that the solid electrolyte is stable at 900 °C which agrees with an earlier study (Kazakos-Kijowski et al., 1988). In Figure 3(a) and Figure 3(b), the prepared solid electrolytes calcined and sintered at 900 °C and 1300 °C, respectively, were indexed against Mg_{0.5}Zr₂(PO₄)₃ [ICDD-04-016-0487] and $Zr_2(PO_4)_2O$ [ICDD-04-011-6948]. Figure 3(a) further revealed the minor second phase as an orthorhombic Zr₂(PO₄)₂O compound at 22.54° 2θ which confirms that the sintered MgZr₄P₆O₂₄ solid electrolyte is stable at 1300 °C (Adamu & Kale, 2016). Similarly, MgHf₄P₆O₂₄ nanopowders calcined at 900 °C and sintered at 1300 °C shows progressive stability as the sintering temperature increases. The diffraction spectra in Figure 3(a) and Figure 3(b) are similar in structure and they exhibit sharp peaks which indicates excellent crystallinities and longrange crystallographic orders (Zuttel, 2003). The similarity and lattice parameters of Zr and Hf analogues are of the same order because of the similarities in sizes and ionic radii, Zr^{4+} and Hf^{4+} [0.72Å and 0.71Å for sixfold coordination], respectively (Sugantha & Varadaraju, 1997; Shannon, 1976; Shannon & Prewitt, 1969). As stated in an earlier study, MgZr₄P₆O₂₄ solid electrolyte transforms from the monoclinic to orthorhombic Zr₂(PO₄)₂O phase at temperatures higher than 1300 °C (Adamu & Kale, 2016). However, MgHf₄P₆O₂₄ remains stable at higher temperatures but 1300 °C was considered the sintering temperature for the purpose of thermal stability and reducing excess carbon footprint.

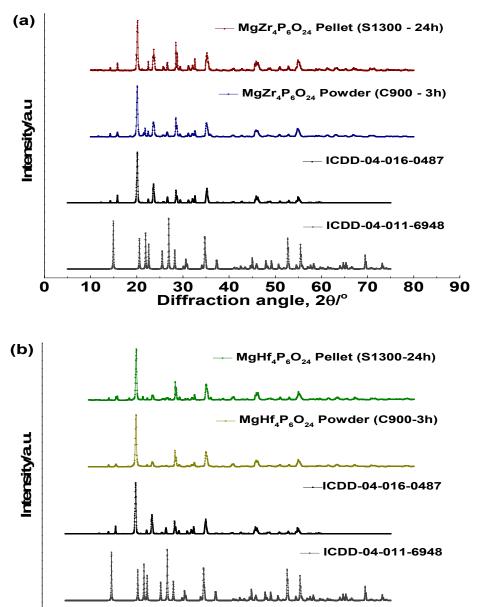


Figure 3: XRD profiles of (a) MgZr₄P₆O₂₄ (Adamu & Kale, 2016; Adamu *et al.*, 2020) (b) MgHf₄P₆O₂₄ (Adamu & Kale, 2025a) solid electrolytes nanopowders calcined at 900 °C and pellets sintered at 1300 °C. All profiles indexed to Mg_{0.5}Zr₂(PO₄)₃ [ICDD-04-016-0487] and Zr₂(PO₄)₂O [ICDD-04-011-6948]

Diffraction angle, 2θ/°

40

50

60

Density and porosity analyses

Figure 4 shows the dependence of relative density on sintering temperatures of MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolytes. Figure 4(a) shows that the optimum relative density of approx. 99% and the least porosity of approx. 1% was achieved at a sintering temperature of 1300 °C. The optimum relative density of approx. 99% for MgZr₄P₆O₂₄ solid electrolyte is in perfect agreement with an earlier study, that acceptable relative density of

10

0

20

solid electrolytes should be higher than 94% (Mori *et al.*, 2006). Furthermore, the relative density of MgZr₄P₆O₂₄ solid electrolyte increases steadily from 60% to 99% as sintering temperature increases from 1000 °C to 1300 °C. At this sintering temperature, a maximum relative density of approx. 99% of the theoretical density was achieved as stable monoclinic system.

80

90

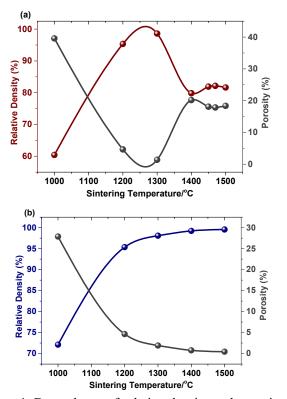


Figure 4: Dependence of relative density and porosity of (a) MgZr₄P₆O₂₄ (Adamu & Kale, 2016) (b) MgHf₄P₆O₂₄ (Adamu & Kale, 2025a) solid electrolytes on sintering temperature

The sintering temperatures from 1300 °C to 1500 °C shows significant transformation from monoclinic MgZr₄P₆O₂₄ to orthorhombic Zr₂(PO₄)₂O phase which depicts a downward trend in the relative density from 99% to 82% at a sintering temperature of 1400 °C. High volatility of P₂O₅ oxide at temperatures higher than 1300 °C can be a contributing factor for the sharp decrease in density of MgZr₄P₆O₂₄ solid electrolyte, suggesting that 1300 °C is the optimum sintering temperature. Figure 4 shows that porosity of solid electrolytes decreases with increasing sintering temperatures. This was observed in the sintering temperatures from 1000 °C to 1300 °C, where the porosity decreases rapidly from 40% to 1%. Similarly, MgHf₄P₆O₂₄ solid electrolyte presented in Figure 4(b) shows that the relative density increases steadily with sintering temperatures from 1000 °C to 1500 °C.

Figure 4(b) shows that the MgHf₄P₆O₂₄ solid electrolyte exhibit relative density of approx. 95% at temperatures higher than 1100 °C and 98% optimum density at 1300 °C. Furthermore, since the increment in relative density from 1300 °C to 1500 °C is approx. 1%, it suggests a saturation point has been reached for the densification of MgHf₄P₆O₂₄ solid electrolyte.

Morphology of solid electrolytes (SEM-EDS)

The morphological analyses of MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolytes using SEM on a cross-section of fracture surface of the solid electrolytes pellets sintered at 1300 $^{\circ}$ C are presented in Figure 5, equipped each with an EDS spectrum

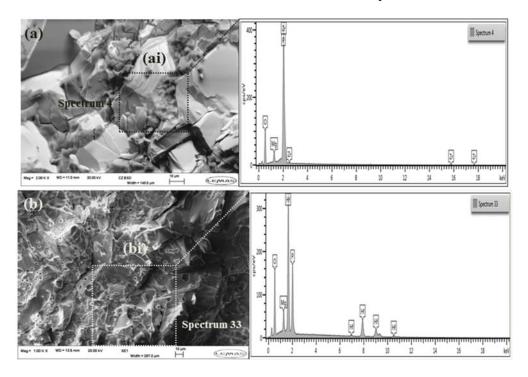


Figure 5: SEM micrographs fracture surfaces of (a) MgZr₄P₆O₂₄ (Adamu & Kale, 2016; Adamu *et al.*, 2020) (b) MgHf₄P₆O₂₄ pellets sintered at 1300 °C, showing their corresponding EDS spectrum (ai - bi)

The elemental analysis, atomic fraction (%) and atomic ratio extracted from the EDS spectrum of the sintered $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ solid electrolyte pellets in Figure 5 is presented on Table 1.

Table 1: Average Elemental Composition of EDS Spectra from Fracture Surface of the Sintered MgZr₄P₆O₂₄ (Adamu & Kale, 2016; Adamu *et al.*, 2020) and MgHf₄P₆O₂₄ Solid Electrolyte Pellets

Element	Atomic Fraction (%)	Atomic Ratio
	MgZr ₄ P ₆ O ₂₄	
Mg	2.83	1.00
Zr	11.68	4.13
P	16.53	5.84
O	68.96	26.13
Total	100.00	
$MgHf_4P_6O_{24}$		
Mg	2.83	1.00
Hf	9.50	3.36
P	17.40	6.15
O	70.27	24.83
Total	100.00	

Figure 5 is micrographs of the MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolyte fracture surface pellets sintered at 1300 °C. Figure 5(a) and Figure 5(b) shows that both sintered pellets possess dense structure which is in perfect agreement with the relative densities of MgZr₄P₆O₂₄ (99%) and MgHf₄P₆O₂₄ (98%) solid electrolytes, respectively. It also shows that the fracture mode are almost totally intergranular and that there are no secondary phases observed at the grain boundaries or segregation to the grain boundaries.

The EDS points analysed from a number of sites show that both solid electrolytes are homogeneous and the average elemental composition from different locations for $MgZr_4P_6O_{24}$ solid electrolyte have stoichiometric concentration. However, the elemental composition of some points for $MgHf_4P_6O_{24}$ solid electrolyte are non-stoichiometric because the atomic ratio of some elements shown on Table 1 are much smaller than the required standard hence, they could not be standardised by approximation.

Figure 6 is EDS mapping across the fracture surfaces of sintered MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolyte pellets showing the homogeneity of the various component oxides and possible phase reactions.

The EDS elemental mapping across the fracture surfaces of MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolytes presented in Figure 6 shows a clear identification of the component elements in the map spectrum of the two solid electrolytes analysed in this study. The different component elements further shows the stoichiometric chemical relation defined by atomic ratio of the solid electrolytes. The component maps presented in different colours are reflective of the EDS layered image. In Figure 6(a), the presence of Mg, Zr, P and O are clearly identified on the EDS layered image in different colours which shows that the sample component analysed is homogeneous. Similarly, the elemental maps distribution of MgHf₄P₆O₂₄ solid electrolyte is described in Figure 6(b). In both cases, all the component elements were distinguished with clear unique colours corresponding to their homogeneous distribution on the EDS layered images.

Temperature dependence of ionic conductivity

Figure 7 shows ionic conductivity of $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ solid electrolytes as a function of temperature. In this study, several points are outlined: Firstly, the linearity of the plots suggest there are no significant structural and phase changes noticed in the impedance temperatures. This identifies $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ solid electrolytes as having comparable ionic conducting species. Activation energy (E_a) which is energy of formation and migration of ions in $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ solid electrolytes were analysed from the gradient of Arrhenius plots by fitting the ionic conductivity data in this study with Arrhenius equation presented in Equation 3

$$\sigma T = \sigma_0(T) \exp\left(-\frac{E_a}{kT}\right)$$
 Equation 3

where:

 σ_o = Pre-exponential factor related to the effective number of mobile charge carriers

 E_a = Thermal activation energy for oxide ion migration T = Absolute temperature (in Kelvin, K)

k = Boltzmann constant

Ionic conduction is a thermally activated transport process. Therefore, the ionic conductivity of a solid electrolyte increases at increasing temperatures (Zuttel, 2003; Bellino *et al.*, 2006; Prabu *et al.*, 2011). In this study, ionic conductivity of MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolytes increase exponentially as temperatures increase. The ionic conductivity of MgZr₄P₆O₂₄ and MgHf₄P₆O₂₄ solid electrolytes and

their corresponding impedance temperatures in Figure 7 are 7.23 x 10^{-3} Scm⁻¹ at 725 °C and 4.52 x 10^{-4} Scm⁻¹ at 747 °C, respectively, and their respective activation energy (E_a) from the slope of $ln\sigma_{dc}T$ - $1000T^{-1}$ plots in Figure 7 are 0.84 ± 0.04 eV and 0.74 ± 0.02 eV. This indicates that MgZr₄P₆O₂₄ solid electrolyte exhibits a higher conductivity ($\sigma_{ac} = 7.23 \times 10^{-3}$ Scm⁻¹) at 725 °C while MgHf₄P₆O₂₄ solid electrolyte has a higher mobility of Mg²⁺-ions at 747 °C. The ionic conductivity of both solid electrolytes in Figure 7 shows that MgZr₄P₆O₂₄ solid electrolyte analysed from 197 °C to 725 °C portrays better ionic conducting species than MgHf₄P₆O₂₄ solid electrolyte analysed from 182 °C to 747 °C. However, the MgHf₄P₆O₂₄ solid electrolyte maintains better thermal stability at temperatures higher

than 1300 °C. Furthermore, it was observed that the crossover point in Figure 7 for the bulk ionic conductivity is identified at 394 °C. This suggests that MgZr₄P₆O₂₄ solid electrolyte is a marginally better ionic conductor than MgHf₄P₆O₂₄ solid electrolyte at temperatures greater than 394 °C whereas, at temperatures below 394 °C, MgHf₄P₆O₂₄ solid electrolyte is marginally better than MgZr₄P₆O₂₄ solid electrolyte. This observation could be as a result of the enhancement of ionic conductivity due to space-charge region effect (Vaidehi *et al.*, 1986) since the MgZr₄P₆O₂₄ solid electrolyte is a composite solid electrolyte while MgHf₄P₆O₂₄ solid electrolyte is a single-phase solid electrolyte.

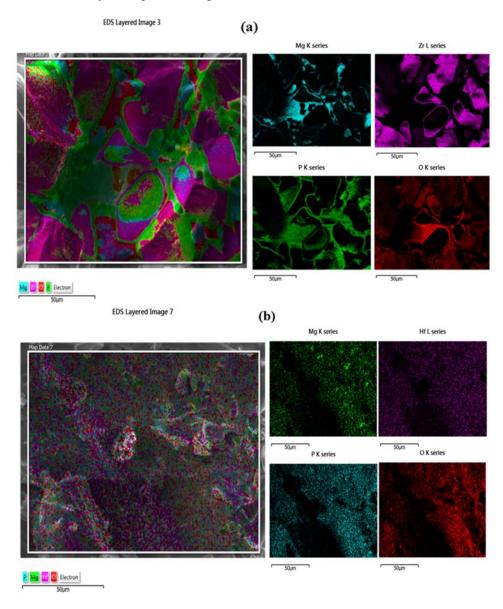


Figure 6: EDS mapping across the fracture surface of (a) $MgZr_4P_6O_{24}$ (b) $MgHf_4P_6O_{24}$ solid electrolyte pellets sintered at 1300 °C

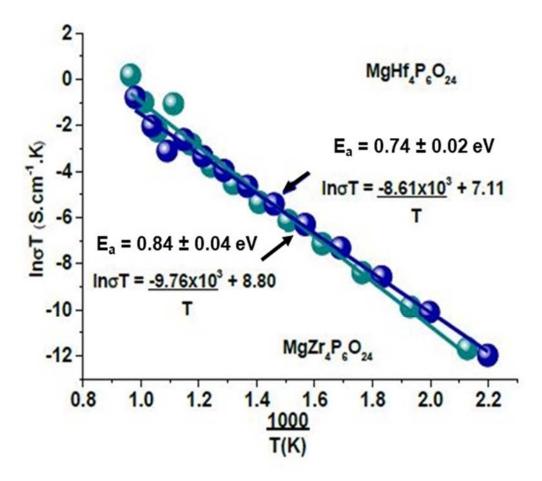


Figure 7: Bulk ionic conductivity profiles of MgZr₄P₆O₂₄ (Adamu & Kale, 2016; Adamu *et al.*, 2020) and MgHf₄P₆O₂₄ (Adamu & Kale, 2025a) solid electrolytes as a function of temperature

CONCLUSION

According to TGA-DSC and XRD analyses, the xerogel powders prepared during sol-gel synthesis transformed to pure single phase monoclinic $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ solid electrolytes after calcination at 900 °C. Dense and stable pellets of $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ solid electrolytes for density, morphology and impedance analyses were prepared by room temperature compressive pressure consolidation and sintering of the calcined nano size powders at 1300 °C. The electrical properties of $MgZr_4P_6O_{24}$ and $MgHf_4P_6O_{24}$ solid electrolytes were determined as a function of temperature using impedance spectroscopy. The solid electrolytes appear to be Mg^{2+} -ion conductor at high temperatures for electrochemical devices and thermodynamic measurements.

ACKNOWLEDGEMENTS

We appreciate Kogi State Polytechnic and Tertiary Education Trust Fund (TETFund) for providing infrastructure and funding opportunities for this study. We also thank the School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom for providing world class laboratories and workshops for this study.

REFERENCES

Adamu, M., & Kale, G. M. (2016). Novel sol-gel synthesis of MgZr₄P₆O₂₄ composite solid electrolyte and newer insight into the Mg²⁺-ion conducting properties using impedance spectroscopy. *Journal of Physical Chemistry C*, 120(32), 17909-17915.

Adamu, M., Jacob, K. T., & Kale, G. M. (2020). Assessment of MgZr₄P₆O₂₄ solid electrolyte for sensing Mg in molten non-ferrous alloys. *Journal of The Electrochemical Society*, 167, 027532.

Adamu, M. A., & Kale, G. M. (2025a). Structural and thermal stability of sol-gel prepared

- MgHf₄P₆O₂₄ solid electrolyte in molten pure aluminium. International *Journal of Recent Innovations in Academic Research*, 9(3), 294-300.
- Adamu, M. A., & Kale, G. M. (2025b). Electrical and electrochemical characterisation of sol-gel prepared Magnesium Hafnium Phosphate solid electrolyte for magnesium-sensors. International *Journal of Recent Innovations in Academic Research*, 9(3), 337-344.
- Bellino, M. G., Lamas, D. G., & Walsoe de Reca, N. E. (2006). A mechanism for the fast ionic transport in nanostructured oxide-ion solid electrolytes. *Advanced Materials*, 18(22), 3005-3009.
- Brinker, C. J., & Scherer, G. W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York, 912.
- Chang, Y. A., & Sommer, F. (1997). Thermodynamics of alloy formation, in: *TMS* 1997. Warrendale, 77.
- Collin, G., & Boilot, J. P. (1989). Superionic solids and solid electrolytes. Academic Press, San Diego.
- Collongues, R., Gourier, D., Kahn, A., Boilot, J. P., Colomban, Ph., & Wicker, A. (1984). β alumina, a typical solid electrolyte: latest developments in fundamental approach and in battery utilsation. *Journal of Physics and Chemistry of Solids*, 45(10), 981-1013.
- Fergus, J. W. (2009). Electrochemical sensors: fundamentals, key materials and applications. solid state electrochemistry I: fundamentals, materials and their applications, 427-491.
- Ferloni, P., & Magistris, A. (1994). New materials for solid state electrochemistry. *Journal de Physique IV France*, C1-3-C1-15.
- Fischer, W. A., & Janke, D. (1975). Metallurgische elektrochemie. Verlag Stahleisen, Dusseldorf.
- Goto, K. S. (1988). Solid state electrochemistry and its applications to sensors and electronic devices. Elsevier, Amsterdam.
- Hagenmuller, P., & Van Gool, W. (1978). Solid electrolytes: general principles, characterisation, materials, applications. Academic Press, New York.
- Hladik, J. (1972). Physics of electrolytes: thermodynamics and electrode processes in solid-state electrolytes (Vol. 2). Academic Press, London.
- Ipser, H., Mikula, A., & Katayama, I. (2010). Overview: the emf method as a source of experimental thermodynamic data. *Calphad*, 34(3), 271-278.
- Kakihana, M. (1996). Invited review 'sol-gel' preparation of high temperature superconducting oxides. *Journal of Sol-Gel Science and Technology*, 6(1), 7-55.

- Kale, G. M., & Jacob, K. T. (1989). Thermodynamic partial properties of Na₂O in NASICON solid solution, Na_{1+x}Zr₂Si_xP_{3-x}O₁₂. *Journal of Materials Research*, 4(2), 417-422.
- Kale, G. M., Davidson, A. J., & Fray, D. J. (1996). Investigation into an improved design of CO₂ sensor. *Solid State Ionics*, 86-88, 1107-1110.
- Kale, G. M., Wang, L., & Hong, Y. (2004). Hightemperature sensor for in-line monitoring of Mg and Li in molten Al employing ionconducting ceramic electrolytes. *International Journal of Applied Ceramic Technology*, 1(2), 180-187.
- Kazakos-Kijowski, A., Komarneni, S., Agrawal, D., & Roy R. (1988). Synthesis, crystal data and thermal stability of Magnesium Zirconium Phosphate [MgZr₄(PO₄)₆]. *Materials Research Bulletin*, 23(8), 1177-1184.
- Kummer, J. T. (1972). β-alumina electrolytes. *Progress in Solid State Chemistry*, 7, 141-175.
- Mori, M., Suda, E., Pacaud, B., Murai, K., & Moriga, T. (2006). Effect of components in electrodes on sintering characteristics of Ce_{0.9}Gd_{0.1}O_{1.95} electrolyte in intermediate-temperature solid oxide fuel cells during fabrication. *Journal of Power Sources*, 157(2), 688-694.
- Mudenda, S., & Kale, G. M. (2017). Electrochemical determination of activity of Na₂O in Na₂Ti₆O₁₃-TiO₂ two phase system between 803-1000 K. *Electrochimica Acta*, 258, 1059-1063.
- Pet'kov, V. I., Shipilov, A. S., Markin, A. V., & Smirnova, N. N. (2014). Thermodynamic properties of crystalline Magnesium Zirconium Phosphate. *Journal of Thermal Analysis and Calorimetry*, 115(2), 1453-1463.
- Prabu, M., Selvasekarapandian, S., Kulkarni, A. R., Karthikeyan, S., Hirankumar, G., & Sanjeeviraja, C. (2011). Ionic transport properties of LiCoPO₄ cathode material. *Solid State Sciences*, 13(9), 1714-1718.
- Pratt, J. (1990). Applications of solid electrolytes in thermodynamic studies of materials: a review. *Metallurgical and Materials Transactions A*, 21(5), 1223-1250.
- Rickert, H. (1982). Electrochemistry of solids: an introduction. Springer-Verlag, Berlin.
- Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. Section A: Crystal Physics Diffraction, Theoretical and General Crystallography, 32(5), 751-767.
- Shannon, R. T., & Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. *Acta Crystallographica B: Structural Science*,

- Crysta Engineering and Materials, 25(5), 925-946
- Stevens, R., & Binner, J. (1984). Structure, properties and production of β-alumina. *Journal of Materials Science*, 19(3), 695-715.
- Subbarao, E. C. (1980). Solid electrolytes and their applications. Plenum Press, New York.
- Sugantha, M., & Varadaraju, U. (1997). Ionic conductivity of Li^+ -ion conductors $Li_2M^{3+}M^{4+}P_3O_{12}$. Solid State Ionics, 95(3), 201-205
- Takehiko, T (ed). (1989). High conductivity solid ionic conductors: recent trends and applications. World Scientific, Hong Kong.
- Vaidehi, N., Akila, R., Shukla, A. K., & Jacob, K. T. (1986). Enhanced ionic conduction in dispersed solid electrolyte systems CaF₂ Al₂O₃ and CaF₂ CeO₂. *Materials Research Bulletin*, 21(8), 909-916
- West, A. R. (1989). Solid electrolytes. *Ber. Bunsenges*. *Physical Chemistry*, 93(11), 1235-1241.
- Züttel, A. (2003). Materials for hydrogen storage. *Materials Today*, 6(9), 24-33.